| import time |
| import numpy as np |
| import matplotlib.pyplot as plt |
| from matplotlib.font_manager import FontProperties |
| from sklearn import datasets |
| from sklearn.model_selection import train_test_split |
| from sklearn.decomposition import PCA |
| from sklearn.neighbors import KNeighborsClassifier |
| %matplotlib inline |
| font = FontProperties(fname='/Library/Fonts/Heiti.ttc') |
| |
| digits = datasets.load_digits() |
| X = digits.data |
| y = digits.target |
| |
| X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) |
| knn = KNeighborsClassifier() |
| knn.fit(X_train, y_train) |
| KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', |
| metric_params=None, n_jobs=None, n_neighbors=5, p=2, |
| weights='uniform') |
| knn.score(X_train, y_train) |
| pca = PCA(n_components=2) |
| |
| pca.fit(X_train) |
| X_train_reduction = pca.transform(X_train) |
| X_test_reduction = pca.transform(X_test) |