Matplotlib:绘图和可视化
- 简介
- 简单绘制线形图
- plot函数
- 支持图类型
- 保存图表
1、简介
Matplotlib是一个强大的Python绘图和数据可视化的工具包。数据可视化也是我们数据分析的最重要的工作之一,可以帮助我们完成很多操作,例如:找出异常值、必要的一些数据转换等。完成数据分析的最终结果也许就是做一个可交互的数据可视化。
安装方式:
pip install matplotlib
引用方法:
import matplotlib.pyplot as plt
2、简单绘制线形图
plt.plot() # 绘图函数
plt.show() # 显示图像
在jupyter notebook中不执行这条语句也是可以将图形展示出来
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(10)
plt.plot(data)
plt.show() # 显示图像,在notebook中不执行这一句也可以
执行结果:
虽然seaborn这些库和pandas的内置绘图函数能够处理许多普通的绘图任务,如果需要自定义一些高级功能的话就必须要matplotlib API.
插图:恶搞图02
3、plot函数
plot函数:绘制折线图
- 线型linestyle(-,-.,–,..)
- 点型marker(v,^,s,*,H,+,X,D,O,…)
- 颜色color(b,g,r,y,k,w,…)
plt.plot([0,3,9,15,30],linestyle = '-.',color = 'r',marker = 'o')
图像标注
方法 | 描述 | |
---|---|---|
plt.title() | 设置图像标题 | |
plt.xlabel() | 设置x轴名称 | |
plt.ylabel() | 设置y轴名称 | |
plt.xlim() | 设置x轴范围 | |
plt.ylim() | 设置y轴范围 | |
plt.xticks() | 设置x轴刻度 | |
plt.yticks() | 设置y轴刻度 | |
plt.legend() | 设置曲线图例 |
plt.plot([0,3,9,15,30],linestyle = '-.',color = 'r',marker = 'o',label="A")
plt.plot([1,3,16,23,30],[30,23,13,25,30],label='B')
plt.title("Title") # 标题
plt.xlabel('X') # x轴名称
plt.ylabel('Y') # y轴名称
plt.xticks(np.arange(0,30,2)) # x轴刻度
plt.xlim(-0.2,10,2) # x轴范围
plt.legend() # 曲线图例
运行图例:
绘制数学函数
使用Matplotlib模块在一个窗口中绘制数学函数y=x, y=x**2,y=sinx的图像,使用不同颜色的线加以区别,并使用图例说明各个线代表什么函数。