一、概述
本文以淘宝作为例子,介绍从一百个到千万级并发情况下服务端的架构的演进过程,同时列举出每个演进阶段会遇到的相关技术, 让大家对架构的演进有一个整体的认知,文章最后汇总了一些架构设计的原则。 特别说明:本文以淘宝为例仅仅是为了便于说明演进过程可能遇到的问题,并非是淘宝真正的技术演进路径
二、架构演进
以淘宝作为例子。在网站最初时,应用数量与用户数都较少,可以把Tomcat和数据库部署在同一台服务器上。
浏览器往www.taobao.com发起请求时,首先经过DNS服务器(域名系统)把域名转换为实际IP地址10.102.4.1,
浏览器转而访问该IP对应的Tomcat。
随着用户数的增长,Tomcat和数据库之间竞争资源,单机性能不足以支撑业务
Tomcat和数据库分别独占服务器资源,显著提高两者各自性能。
随着用户数的增长,并发读写数据库成为瓶颈
在Tomcat同服务器上或同JVM中增加本地缓存,并在外部增加分布式缓存,缓存热门商品信息或热门商品的html页面等。通过缓存能把绝大多数请求在读写数据库前拦截掉,大大降低数据库压力。其中涉及的技术包括:使用memcached作为本地缓存,使用Redis作为分布式缓存,还会涉及缓存一致性、缓存穿透/击穿、缓存雪崩、热点数据集中失效等问题。
缓存抗住了大部分的访问请求,随着用户数的增长,并发压力主要落在单机的Tomcat上,响应逐渐变慢
在多台服务器上分别部署Tomcat,使用反向代理软件(Nginx)把请求均匀分发到每个Tomcat中。此处假设Tomcat最多支持100个并发,Nginx最多支持50000个并发,那么理论上Nginx把请求分发到500个Tomcat上,就能抗住50000个并发。其中涉及的技术包括:Nginx、HAProxy,两者都是工作在网络第七层的反向代理软件,主要支持http协议,还会涉及session共享、文件上传下载的问题。
反向代理使应用服务器可支持的并发量大大增加,但并发量的增长也意味着更多请求穿透到数据库,单机的数据库最终成为瓶颈
把数据库划分为读库和写库,读库可以有多个,通过同步机制把写库的数据同步到读库,对于需要查询最新写入数据场景,可通过在缓存中多写一份,通过缓存获得最新数据。其中涉及的技术包括:Mycat,它是数据库中间件,可通过它来组织数据库的分离读写和分库分表,客户端通过它来访问下层数据库,还会涉及数据同步,数据一致性的问题。
业务逐渐变多,不同业务之间的访问量差距较大,不同业务直接竞争数据库,相互影响性能,接下来要进行分库、分表
把不同业务的数据保存到不同的数据库中,使业务之间的资源竞争降低,对于访问量大的业务,可以部署更多的服务器来支撑。这样同时导致跨业务的表无法直接做关联分析,需要通过其他途径来解决,但这不是本文讨论的重点,有兴趣的可以自行搜索解决方案。
随着用户数的增长,单机的写库会逐渐会达到性能瓶颈,注意是写数据库慢,是写而不是读
如针对评论数据,可按照商品ID进行hash,路由到对应的表中存储;针对支付记录,可按照小时创建表,每个小时表继续拆分为小表,使用用户ID或记录编号来路由数据。只要实时操作的表数据量足够小,请求能够足够均匀的分发到多台服务器上的小表,那数据库就能通过水平扩展的方式来提高性能。其中前面提到的Mycat也支持在大表拆分为小表情况下的访问控制。
这种做法显著的增加了数据库运维的难度,对DBA的要求较高。数据库设计到这种结构时,已经可以称为分布式数据库,但是这只是一个逻辑的数据库整体,数据库里不同的组成部分是由不同的组件单独来实现的,如分库分表的管理和请求分发,由Mycat实现,SQL的解析由单机的数据库实现,读写分离可能由网关和消息队列来实现,查询结果的汇总可能由数据库接口层来实现等等,这种架构其实是MPP(大规模并行处理)架构的一类实现。
目前开源和商用都已经有不少MPP数据库,开源中比较流行的有Greenplum、TiDB、Postgresql XC、HAWQ等,商用的如南大通用的GBase、睿帆科技的雪球DB、华为的LibrA等等,不同的MPP数据库的侧重点也不一样,如TiDB更侧重于分布式OLTP场景,Greenplum更侧重于分布式OLAP场景,这些MPP数据库基本都提供了类似Postgresql、Oracle、MySQL那样的SQL标准支持能力,能把一个查询解析为分布式的执行计划分发到每台机器上并行执行,最终由数据库本身汇总数据进行返回,也提供了诸如权限管理、分库分表、事务、数据副本等能力,并且大多能够支持100个节点以上的集群,大大降低了数据库运维的成本,并且使数据库也能够实现水平扩展。
数据库和Tomcat都能够水平扩展,可支撑的并发大幅提高,随着用户数的增长,最终单机的Nginx又会成为瓶颈
由于瓶颈在Nginx,因此无法通过两层的Nginx来实现多个Nginx的负载均衡。图中的LVS和F5是工作在网络第四层的负载均衡解决方案,其中LVS是软件,运行在操作系统内核态,可对TCP请求或更高层级的网络协议进行转发,因此支持的协议更丰富,并且性能也远高于Nginx,可假设单机的LVS可支持几十万个并发的请求转发;F5是一种负载均衡硬件,与LVS提供的能力类似,性能比LVS更高,但价格昂贵。由于LVS是单机版的软件,若LVS所在服务器宕机则会导致整个后端系统都无法访问,因此需要有备用节点。可使用keepalived软件模拟出虚拟IP,然后把虚拟IP绑定到多台LVS服务器上,浏览器访问虚拟IP时,会被路由器重定向到真实的LVS服务器,当主LVS服务器宕机时,keepalived软件会自动更新路由器中的路由表,把虚拟IP重定向到另外一台正常的LVS服务器,从而达到LVS服务器高可用的效果。
此处需要注意的是,上图中从Nginx层到Tomcat层这样画并不代表全部Nginx都转发请求到全部的Tomcat,在实际使用时,可能会是几个Nginx下面接一部分的Tomcat,这些Nginx之间通过keepalived实现高可用,其他的Nginx接另外的Tomcat,这样可接入的Tomcat数量就能成倍的增加。
由于LVS也是单机的,随着并发数增长到几十万时,LVS服务器最终会达到瓶颈,此时用户数达到千万甚至上亿级别,用户分布在不同的地区,与服务器机房距离不同,导致了访问的延迟会明显不同
在DNS服务器中可配置一个域名对应多个IP地址,每个IP地址对应到不同的机房里的虚拟IP。当用户访问www.taobao.com时,DNS服务器会使用轮询策略或其他策略,来选择某个IP供用户访问。此方式能实现机房间的负载均衡,至此,系统可做到机房级别的水平扩展,千万级到亿级的并发量都可通过增加机房来解决,系统入口处的请求并发量不再是问题。
随着数据的丰富程度和业务的发展,检索、分析等需求越来越丰富,单单依靠数据库无法解决如此丰富的需求
当数据库中的数据多到一定规模时,数据库就不适用于复杂的查询了,往往只能满足普通查询的场景。对于统计报表场景,在数据量大时不一定能跑出结果,而且在跑复杂查询时会导致其他查询变慢,对于全文检索、可变数据结构等场景,数据库天生不适用。因此需要针对特定的场景,引入合适的解决方案。如对于海量文件存储,可通过分布式文件系统HDFS解决,对于key value类型的数据,可通过HBase和Redis等方案解决,对于全文检索场景,可通过搜索引擎如ElasticSearch解决,对于多维分析场景,可通过Kylin或Druid等方案解决。
当然,引入更多组件同时会提高系统的复杂度,不同的组件保存的数据需要同步,需要考虑一致性的问题,需要有更多的运维手段来管理这些组件等。
引入更多组件解决了丰富的需求,业务维度能够极大扩充,随之而来的是一个应用中包含了太多的业务代码,业务的升级迭代变得困难
按照业务板块来划分应用代码,使单个应用的职责更清晰,相互之间可以做到独立升级迭代。这时候应用之间可能会涉及到一些公共配置,可以通过分布式配置中心Zookeeper来解决。
不同应用之间存在共用的模块,由应用单独管理会导致相同代码存在多份,导致公共功能升级时全部应用代码都要跟着升级
如用户管理、订单、支付、鉴权等功能在多个应用中都存在,那么可以把这些功能的代码单独抽取出来形成一个单独的服务来管理,这样的服务就是所谓的微服务,应用和服务之间通过HTTP、TCP或RPC请求等多种方式来访问公共服务,每个单独的服务都可以由单独的团队来管理。此外,可以通过Dubbo、SpringCloud等框架实现服务治理、限流、熔断、降级等功能,提高服务的稳定性和可用性。
不同服务的接口访问方式不同,应用代码需要适配多种访问方式才能使用服务,此外,应用访问服务,服务之间也可能相互访问,调用链将会变得非常复杂,逻辑变得混乱
ESB–》中台的一个重要组成
-
中台是业务层的概念,它指的是将多个应用后台在业务上提供相同服务的功能剥离出来,形成一个集中化的服务平台。中台可以根据其提供服务的不同分为业务中台和数据中台。
-
ESB(Enterprise Service Bus)是企业服务总线,用来连接各服务节点。它实现了对不同协议的不同服务进行集成,通过消息转化、解释等功能,使不同系统能进行有效的通信。
通过ESB统一进行访问协议转换,应用统一通过ESB来访问后端服务,服务与服务之间也通过ESB来相互调用,以此降低系统的耦合程度。这种单个应用拆分为多个应用,公共服务单独抽取出来来管理,并使用企业消息总线来解除服务之间耦合问题的架构,就是所谓的SOA(面向服务)架构,这种架构与微服务架构容易混淆,因为表现形式十分相似。个人理解,微服务架构更多是指把系统里的公共服务抽取出来单独运维管理的思想,而SOA架构则是指一种拆分服务并使服务接口访问变得统一的架构思想,SOA架构中包含了微服务的思想。
业务不断发展,应用和服务都会不断变多,应用和服务的部署变得复杂,同一台服务器上部署多个服务还要解决运行环境冲突的问题,此外,对于如大促这类需要动态扩缩容的场景,需要水平扩展服务的性能,就需要在新增的服务上准备运行环境,部署服务等,运维将变得十分困难
目前最流行的容器化技术是Docker,最流行的容器管理服务是Kubernetes(K8S),应用/服务可以打包为Docker镜像,通过K8S来动态分发和部署镜像。Docker镜像可理解为一个能运行你的应用/服务的最小的操作系统,里面放着应用/服务的运行代码,运行环境根据实际的需要设置好。把整个“操作系统”打包为一个镜像后,就可以分发到需要部署相关服务的机器上,直接启动Docker镜像就可以把服务起起来,使服务的部署和运维变得简单。
在大促的之前,可以在现有的机器集群上划分出服务器来启动Docker镜像,增强服务的性能,大促过后就可以关闭镜像,对机器上的其他服务不造成影响(在3.14节之前,服务运行在新增机器上需要修改系统配置来适配服务,这会导致机器上其他服务需要的运行环境被破坏)。
使用容器化技术后服务动态扩缩容问题得以解决,但是机器还是需要公司自身来管理,在非大促的时候,还是需要闲置着大量的机器资源来应对大促,机器自身成本和运维成本都极高,资源利用率低
系统可部署到公有云上,利用公有云的海量机器资源,解决动态硬件资源的问题,在大促的时间段里,在云平台中临时申请更多的资源,结合Docker和K8S来快速部署服务,在大促结束后释放资源,真正做到按需付费,资源利用率大大提高,同时大大降低了运维成本。
所谓的云平台,就是把海量机器资源,通过统一的资源管理,抽象为一个资源整体,在之上可按需动态申请硬件资源(如CPU、内存、网络等),并且之上提供通用的操作系统,提供常用的技术组件(如Hadoop技术栈,MPP数据库等)供用户使用,甚至提供开发好的应用,用户不需要关系应用内部使用了什么技术,就能够解决需求(如音视频转码服务、邮件服务、个人博客等)。在云平台中会涉及如下几个概念:
1、IaaS:基础设施即服务。对应于上面所说的机器资源统一为资源整体,可动态申请硬件资源的层面;
2、PaaS:平台即服务。对应于上面所说的提供常用的技术组件方便系统的开发和维护;
3、SaaS:软件即服务。对应于上面所说的提供开发好的应用或服务,按功能或性能要求付费。
至此,以上所提到的从高并发访问问题,到服务的架构和系统实施的层面都有了各自的解决方案,但同时也应该意识到,在上面的介绍中,其实是有意忽略了诸如跨机房数据同步、分布式事务实现等等的实际问题,这些问题以后有机会再拿出来单独讨论
mysql支持分库分表、还支持分区
1、什么是分库?什么是分表
分库:就是一份完整的数据分散到不同的库中,不同的库部署在不同的机器上,主要为了分摊单库访问压力。
分表:就是一份完整的数据分散到不同的表中,主要为了解决单表数据量过大的读写压力
2、为何要分库分表
2.1 为什么需要分库呢?
业务量剧增,数据集中在单库,会出现性能瓶颈,例如
1、磁盘存储
业务量剧增,MySQL单机磁盘容量会撑爆,拆成多个数据库,磁盘使用率大大降低。
2、并发连接支撑
我们知道数据库连接是有限的。在高并发的场景下,大量请求访问数据库,MySQL单机是扛不住的!
为了应对高并发,可以把订单、用户、商品等不同模块,拆分成多个应用(微服务),并且把单个数据库也拆分成多个不同功能模块的数据库(订单库、用户库、商品库)并部署到不同的服务器上,以分担读写压力。
2.2 为什么需要分表?
单表数据量太大的话,即使SQL命中了索引,如果表的数据量超过一千万的话,查询也是会明显变慢的。
这是因为索引一般是B+树结构,数据千万级别的话,B+树的高度会增高,查询就变慢啦。
MySQL的B+树的高度计算如下
InnoDB存储引擎最小储存单元是页,一页大小就是16k。B+树叶子存的是数据,内部节点存的是键值+指针。索引组织表通过非叶子节点的二分查找法以及指针确定数据在哪个页中,进而再去数据页中找到需要的数据,B+树结构图如下:
假设B+树的高度为2的话,即有一个根结点和若干个叶子结点。这棵B+树的存放总记录数为=根结点指针数*单个叶子节点记录行数。
- 如果一行记录的数据大小为1k,那么单个叶子节点可以存的记录数
=16k/1k =16
. - 非叶子节点内存放多少指针呢?我们假设主键ID为bigint类型,长度为8字节(面试官问你int类型,一个int就是32位,4字节),而指针大小在InnoDB源码中设置为6字节,所以就是
8+6=14
字节,16k/14B =16*1024B/14B = 1170
因此,
1、一棵高度为2的B+树,能存放1170 * 16=18720
条这样的数据记录。
2、同理一棵高度为3
的B+树,能存放1170 *1170 *16 =21902400
,大概可以存放两千万左右的记录。
B+树高度一般为1-3层,如果B+到了4层,查询的时候会多查磁盘的次数,SQL就会变慢。
因此单表数据量超过千万,就需要考虑分表啦。
3、如何分库分表
分为垂直拆分与水平拆分,其实:
1、垂直拆分,本质拆分的是表
2、水平拆分,本质拆分的是数据
3.1 垂直分库
在业务发展初期,业务功能模块比较少,为了快速上线和迭代,往往采用单个数据库来保存数据。数据库架构如下:
但是随着业务蒸蒸日上,系统功能逐渐完善。这时候,可以按照系统中的不同业务进行拆分,比如拆分成用户库、订单库、积分库、商品库,把它们部署在不同的数据库服务器,这就是垂直分库。
垂直分库,将原来一个单数据库的压力分担到不同的数据库,可以很好应对高并发场景。数据库垂直拆分后的架构如下:
3.2 垂直分表
我们可以将一些不常用的、数据较大或者长度较长的列拆分到另外一张表。
user_id、user_name、mobile_no、age、email、nickname、address、user_desc
,如果email、address、user_desc
等字段不常用,我们可以把它拆分到另外一张表,命名为用户详细信息表。这就是垂直分表水平分库是指,将表的数据量切分到不同的数据库服务器上,每个服务器具有相同的库和表,只是表中的数据集合不一样。它可以有效的缓解单机单库的性能瓶颈和压力。
用户库的水平拆分架构如下:
如果一个表的数据量太大,可以按照某种规则(如hash取模、range
),把数据切分到多张表去。
一张订单表,按时间range
拆分如下:
3.5 水平分库分表策略
分库分表策略一般有几种,使用与不同的场景:
- range范围
- hash取模
- range+hash取模混合
3.6 range范围
range,即范围策略划分表。比如我们可以将表的主键,按照从0~1000万
的划分为一个表,1000~2000万
划分到另外一个表。如下图:
当然,有时候我们也可以按时间范围来划分,如不同年月的订单放到不同的表,它也是一种range的划分策略。
这种方案的优点:
- 这种方案有利于扩容,不需要数据迁移。假设数据量增加到5千万,我们只需要水平增加一张表就好啦,之前
0~4000万
的数据,不需要迁移。
缺点:
- 这种方案会有热点问题,因为订单id是一直在增大的,也就是说最近一段时间都是汇聚在一张表里面的。比如最近一个月的订单都在
1000万~2000
万之间,平时用户一般都查最近一个月的订单比较多,请求都打到order_1
表啦,这就导致表的数据热点问题。
3.7 hash取模
hash取模策略:指定的路由key(一般是user_id、订单id作为key)对分表总数进行取模,把数据分散到各个表中。
比如原始订单表信息,我们把它分成4张分表:
- 比如id=1,对4取模,就会得到1,就把它放到第1张表,即
t_order_0
; - id=3,对4取模,就会得到3,就把它放到第3张表,即
t_order_2
;
这种方案的优点:
- hash取模的方式,不会存在明显的热点问题。
缺点:
- 如果一开始按照hash取模分成4个表了,未来某个时候,表数据量又到瓶颈了,需要扩容,这就比较棘手了。比如你从4张表,又扩容成
8
张表,那之前id=5
的数据是在(5%4=1
,即第一张表),现在应该放到(5%8=5
,即第5
张表),也就是说历史数据要做迁移了。
3.8 range+hash取模混合
既然range存在热点数据问题,hash取模扩容迁移数据比较困难,我们可以综合两种方案一起嘛,取之之长,弃之之短。
比较简单的做法就是,在拆分库的时候,我们可以先用range范围方案,比如订单id在04000万的区间,划分为订单库1,id在4000万8000万的数据,划分到订单库2,将来要扩容时,id在8000万~1.2亿的数据,划分到订单库3。然后订单库内,再用hash取模的策略,把不同订单划分到不同的表。
4、用垂直分还是水平分呢?都会用,示例如下图
5、何时才会考虑分库
6、何时才会考虑分表
如果你的系统处于快速发展时期,如果每天的订单流水都新增几十万,并且,订单表的查询效率明变慢时,就需要规划分库分表了。一般B+树索引高度是2~3层最佳,如果数据量千万级别,可能高度就变4层了,数据量就会明显变慢了。不过业界流传,一般500万数据就要考虑分表了。
7、分库分表会导致的问题
分库分表之后,也会存在一些问题: 事务问题 跨库关联 排序问题 分页问题 分布式ID 1 事务问题 分库分表后,假设两个表在不同的数据库,那么本地事务已经无效啦,需要使用分布式事务了。 2 跨库关联 跨节点Join的问题:解决这一问题可以分两次查询实现 3 排序问题 跨节点的count,order by,group by以及聚合函数等问题:可以分别在各个节点上得到结果后在应用程序端进行合并。 4 分页问题 方案1:在个节点查到对应结果后,在代码端汇聚再分页。 方案2:把分页交给前端,前端传来pageSize和pageNo,在各个数据库节点都执行分页,然后汇聚总数量前端。这样缺点就是会造成空查,如果分页需要排序,也不好搞。 5 分布式ID 据库被切分后,不能再依赖数据库自身的主键生成机制啦,最简单可以考虑UUID,或者使用雪花算法生成分布式ID。
8、分库分布中间件介绍
目前流行的分库分表中间件比较多:
- cobar
- Mycat
- Sharding-JDBC
- Atlas
- TDDL(淘宝)
- vitess
- 架构的调整是否必须按照上述演变路径进行?
不是的,以上所说的架构演变顺序只是针对某个侧面进行单独的改进,在实际场景中,可能同一时间会有几个问题需要解决,或者可能先达到瓶颈的是另外的方面,这时候就应该按照实际问题实际解决。如在政府类的并发量可能不大,但业务可能很丰富的场景,高并发就不是重点解决的问题,此时优先需要的可能会是丰富需求的解决方案。 - 对于将要实施的系统,架构应该设计到什么程度?
对于单次实施并且性能指标明确的系统,架构设计到能够支持系统的性能指标要求就足够了,但要留有扩展架构的接口以便不备之需。对于不断发展的系统,如电商平台,应设计到能满足下一阶段用户量和性能指标要求的程度,并根据业务的增长不断的迭代升级架构,以支持更高的并发和更丰富的业务。 - 服务端架构和大数据架构有什么区别?
所谓的“大数据”其实是海量数据采集清洗转换、数据存储、数据分析、数据服务等场景解决方案的一个统称,在每一个场景都包含了多种可选的技术,如数据采集有Flume、Sqoop、Kettle等,数据存储有分布式文件系统HDFS、FastDFS,NoSQL数据库HBase、MongoDB等,数据分析有Spark技术栈、机器学习算法等。总的来说大数据架构就是根据业务的需求,整合各种大数据组件组合而成的架构,一般会提供分布式存储、分布式计算、多维分析、数据仓库、机器学习算法等能力。而服务端架构更多指的是应用组织层面的架构,底层能力往往是由大数据架构来提供。 - 有没有一些架构设计的原则?
- N+1设计。系统中的每个组件都应做到没有单点故障;
- 回滚设计。确保系统可以向前兼容,在系统升级时应能有办法回滚版本;
- 禁用设计。应该提供控制具体功能是否可用的配置,在系统出现故障时能够快速下线功能;
- 监控设计。在设计阶段就要考虑监控的手段;
- 多活数据中心设计。若系统需要极高的高可用,应考虑在多地实施数据中心进行多活,至少在一个机房断电的情况下系统依然可用;
- 采用成熟的技术。刚开发的或开源的技术往往存在很多隐藏的bug,出了问题没有商业支持可能会是一个灾难;
- 资源隔离设计。应避免单一业务占用全部资源;
- 架构应能水平扩展。系统只有做到能水平扩展,才能有效避免瓶颈问题;
- 非核心则购买。非核心功能若需要占用大量的研发资源才能解决,则考虑购买成熟的产品;
- 使用商用硬件。商用硬件能有效降低硬件故障的机率;
- 快速迭代。系统应该快速开发小功能模块,尽快上线进行验证,早日发现问题大大降低系统交付的风险;
- 无状态设计。服务接口应该做成无状态的,当前接口的访问不依赖于接口上次访问的状态。
原文:https://segmentfault.com/a/1190000018626163